Wigner D-matrix: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) mNo edit summary |
Carl McBride (talk | contribs) No edit summary |
||
Line 14: | Line 14: | ||
\end{array} | \end{array} | ||
</math> | </math> | ||
=== Relation with spherical harmonic functions === | |||
The D-matrix elements with second index equal to zero, are proportional | |||
to [[spherical harmonics]] (normalized to unity) | |||
:<math>D^{\ell}_{m 0}(\alpha,\beta,\gamma)^* = \sqrt{\frac{4\pi}{2\ell+1}} Y_{\ell}^m (\beta, \alpha )</math> | |||
==References== | ==References== | ||
#E. P. Wigner, ''Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren'', Vieweg Verlag, Braunschweig (1931). | #E. P. Wigner, ''Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren'', Vieweg Verlag, Braunschweig (1931). | ||
[[Category: Mathematics]] | [[Category: Mathematics]] |
Revision as of 14:42, 17 June 2008
The Wigner D-matrix is a square matrix, of dimension , given by
where and are Euler angles, and where , known as Wigner's reduced d-matrix, is given by
Relation with spherical harmonic functions
The D-matrix elements with second index equal to zero, are proportional to spherical harmonics (normalized to unity)
References
- E. P. Wigner, Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren, Vieweg Verlag, Braunschweig (1931).