Wigner D-matrix: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) No edit summary |
Carl McBride (talk | contribs) m (Added link to Wikipedia) |
||
Line 18: | Line 18: | ||
to [[spherical harmonics]] (normalized to unity) | to [[spherical harmonics]] (normalized to unity) | ||
:<math>D^{\ell}_{m 0}(\alpha,\beta,\gamma)^* = \sqrt{\frac{4\pi}{2\ell+1}} Y_{\ell}^m (\beta, \alpha )</math> | :<math>D^{\ell}_{m 0}(\alpha,\beta,\gamma)^* = \sqrt{\frac{4\pi}{2\ell+1}} Y_{\ell}^m (\beta, \alpha )</math> | ||
==External links== | |||
*[http://en.wikipedia.org/wiki/Wigner_D-matrix Wigner D-matrix page on Wikipedia] | |||
==References== | ==References== | ||
#E. P. Wigner, ''Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren'', Vieweg Verlag, Braunschweig (1931). | #E. P. Wigner, ''Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren'', Vieweg Verlag, Braunschweig (1931). | ||
[[Category: Mathematics]] | [[Category: Mathematics]] |
Revision as of 14:44, 17 June 2008
The Wigner D-matrix is a square matrix, of dimension , given by
where and are Euler angles, and where , known as Wigner's reduced d-matrix, is given by
Relation with spherical harmonic functions
The D-matrix elements with second index equal to zero, are proportional to spherical harmonics (normalized to unity)
External links
References
- E. P. Wigner, Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren, Vieweg Verlag, Braunschweig (1931).