Wigner D-matrix: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| m (Placed external links at foot of page.) | m (→References:   Added an ISBN for Rose.) | ||
| Line 21: | Line 21: | ||
| ==References== | ==References== | ||
| #Eugene Paul Wigner "Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren", Vieweg Verlag, Braunschweig (1931). | #Eugene Paul Wigner "Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren", Vieweg Verlag, Braunschweig (1931). | ||
| #M. E. Rose "Elementary theory of angular momentum", John Wiley & Sons (1967) | #M. E. Rose "Elementary theory of angular momentum", John Wiley & Sons (1967) ISBN 0486684806 | ||
| #[http://dx.doi.org/10.1016/S0166-1280(97)00185-1 Miguel A. Blanco, M. Flórez and M. Bermejo "Evaluation of the rotation matrices in the basis of real spherical harmonics", Journal of Molecular Structure: THEOCHEM '''419''' pp. 19-27 (1997)] | #[http://dx.doi.org/10.1016/S0166-1280(97)00185-1 Miguel A. Blanco, M. Flórez and M. Bermejo "Evaluation of the rotation matrices in the basis of real spherical harmonics", Journal of Molecular Structure: THEOCHEM '''419''' pp. 19-27 (1997)] | ||
| #[http://dx.doi.org/10.1063/1.2194548 Holger Dachsel "Fast and accurate determination of the Wigner rotation matrices in the fast multipole method", Journal of Chemical Physics '''124''' 144115 (2006)] | #[http://dx.doi.org/10.1063/1.2194548 Holger Dachsel "Fast and accurate determination of the Wigner rotation matrices in the fast multipole method", Journal of Chemical Physics '''124''' 144115 (2006)] | ||
| ==External links== | ==External links== | ||
| *[http://en.wikipedia.org/wiki/Wigner_D-matrix Wigner D-matrix page on Wikipedia] | *[http://en.wikipedia.org/wiki/Wigner_D-matrix Wigner D-matrix page on Wikipedia] | ||
| [[Category: Mathematics]] | [[Category: Mathematics]] | ||
| [[category: Quantum mechanics]] | [[category: Quantum mechanics]] | ||
Revision as of 16:54, 24 February 2009
The Wigner D-matrix (also known as the Wigner rotation matrix) is a square matrix, of dimension , given by (Ref. 2 Eq. 4.12)
where and are Euler angles, and where , known as Wigner's reduced d-matrix, is given by (Ref. 2 Eq. 4.11 and 4.13)
This represents a rotation of about the (inital frame) axis.
Relation with spherical harmonic functions
The D-matrix elements with second index equal to zero, are proportional to spherical harmonics (normalized to unity)
References
- Eugene Paul Wigner "Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren", Vieweg Verlag, Braunschweig (1931).
- M. E. Rose "Elementary theory of angular momentum", John Wiley & Sons (1967) ISBN 0486684806
- Miguel A. Blanco, M. Flórez and M. Bermejo "Evaluation of the rotation matrices in the basis of real spherical harmonics", Journal of Molecular Structure: THEOCHEM 419 pp. 19-27 (1997)
- Holger Dachsel "Fast and accurate determination of the Wigner rotation matrices in the fast multipole method", Journal of Chemical Physics 124 144115 (2006)