Combining rules: Difference between revisions
Jump to navigation
Jump to search
m (Further references + tidy.) |
Carl McBride (talk | contribs) (Added Fender-Halsey combining rule.) |
||
Line 7: | Line 7: | ||
====Berthelot rule==== | ====Berthelot rule==== | ||
:<math>\epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}</math> | :<math>\epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}</math> | ||
====Fender-Halsey==== | |||
The Fender-Halsey combining rule for the [[Lennard-Jones model]] is given by <ref>[http://dx.doi.org/10.1063/1.1701284 B. E. F. Fender and G. D. Halsey, Jr. "Second Virial Coefficients of Argon, Krypton, and Argon-Krypton Mixtures at Low Temperatures", Journal of Chemical Physics '''36''' pp. 1881-1888 (1962)]</ref> | |||
:<math>\epsilon_{ij} = \frac{2 \epsilon_i \epsilon_j}{\epsilon_i + \epsilon_j}</math> | |||
====Hudson and McCoubrey==== | ====Hudson and McCoubrey==== | ||
<ref>[http://dx.doi.org/10.1039/TF9605600761 G. H. Hudson and J. C. McCoubrey "Intermolecular forces between unlike molecules. A more complete form of the combining rules", Transactions of the Faraday Society '''56''' pp. 761-766 (1960)]</ref> | <ref>[http://dx.doi.org/10.1039/TF9605600761 G. H. Hudson and J. C. McCoubrey "Intermolecular forces between unlike molecules. A more complete form of the combining rules", Transactions of the Faraday Society '''56''' pp. 761-766 (1960)]</ref> |
Revision as of 13:21, 28 September 2009
The combining rules (also known as mixing rules) for binary mixtures are variously given by
Admur and Mason
For the second virial coefficient of a mixture [1]
Berthelot rule
Fender-Halsey
The Fender-Halsey combining rule for the Lennard-Jones model is given by [2]
Hudson and McCoubrey
Kong rules
Lorentz rule
See also Lennard-Jones model
Tang and Toennies
Waldman-Hagler rules
References
- ↑ I. Amdur and E. A. Mason "Properties of Gases at Very High Temperatures", Physics of Fluids 1 pp. 370-383 (1958)
- ↑ B. E. F. Fender and G. D. Halsey, Jr. "Second Virial Coefficients of Argon, Krypton, and Argon-Krypton Mixtures at Low Temperatures", Journal of Chemical Physics 36 pp. 1881-1888 (1962)
- ↑ G. H. Hudson and J. C. McCoubrey "Intermolecular forces between unlike molecules. A more complete form of the combining rules", Transactions of the Faraday Society 56 pp. 761-766 (1960)
- ↑ Chang Lyoul Kong "Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12–6) potential and the Morse potential", Journal of Chemical Physics 59 pp. 2464-2467 (1973)
- ↑ K. T. Tang and J. Peter Toennies "New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems", Zeitschrift für Physik D Atoms, Molecules and Clusters 1 pp. 91-101 (1986)
- ↑ M. Waldman and A. T. Hagler "New combining rules for rare-gas Van der-Waals parameters", Journal of Computational Chemistry 14 pp. 1077-1084 (1993)
Related reading
- M. Diaz Peña, C. Pando, and J. A. R. Renuncio "Combination rules for intermolecular potential parameters. I. Rules based on approximations for the long-range dispersion energy", Journal of Chemical Physics 76 pp. 325- (1982)
- M. Diaz Peña, C. Pando, and J. A. R. Renuncio "Combination rules for intermolecular potential parameters. II. Rules based on approximations for the long-range dispersion energy and an atomic distortion model for the repulsive interactions", Journal of Chemical Physics 76 pp. 333- (1982)
- Jérôme Delhommelle; Philippe Millié "Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation", Molecular Physics 99 pp. 619-625 (2001)
- Dezso Boda and Douglas Henderson "The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture", Molecular Physics 106 pp. 2367-2370 (2008)