COMPASS force field: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
(→‎Functional form: Corrected equation)
Line 40: Line 40:
and
and


:<math>\epsilon_{ij} = 2 \sqrt{\epsilon_i \cdot \epsilon_j} \left( \frac{ (r_i^0)^3 \cdot  (r_j^0)^3 }{ (r_i^0)^6 + (r_j^0)^6 }  \right)</math>
:<math>\epsilon_{ij} = 2 \sqrt{\epsilon_i \cdot \epsilon_j} \left( \frac{ (r_i^0)^3 \cdot  (r_j^0)^3 }{ (r_i^0)^6  \cdot (r_j^0)^6 }  \right)</math>


==Parameters==
==Parameters==

Revision as of 11:23, 10 April 2013

COMPASS (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies) is a member of the consistent family of force fields (CFF91, PCFF, CFF and COMPASS), which are closely related second-generation force fields. They were parameterized against a wide range of experimental observables for organic compounds containing H, C, N, O, S, P, halogen atoms and ions, alkali metal cations, and several biochemically important divalent metal cations. PCFF is based on CFF91, extended so as to have a broad coverage of organic polymers, (inorganic) metals, and zeolites. COMPASS is the first force field that has been parameterized and validated using condensed phase properties in addition to various and empirical data for molecules in isolation. Consequently, this forcefield enables accurate and simultaneous prediction of structural, conformational, vibrational, and thermo-physical properties for a broad range of molecules in isolation and in condensed phases.

Functional form

The COMPASS force field (Ref. 1 Eq. 1) consists of terms for bonds (), angles (), dihedrals (), out-of-plane angles () as well as cross-terms, and two non-bonded functions, a Coulombic function for electrostatic interactions and a 9-6 Lennard-Jones potential for van der Waals interactions.

where

and

with the following combining rules (Ref. 1 Eqs. 2 and 3):

and

Parameters

References

  1. H. Sun "COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications - Overview with Details on Alkane and Benzene Compounds", Journal of Physical Chemistry B 102 pp. 7338–7364 (1998)
  2. H. Sun, P. Ren and J. R. Fried "The COMPASS force field: parameterization and validation for phosphazenes", Computational and Theoretical Polymer Science 8 pp. 229-246 (1998)
  3. S. W. Bunte and H. Sun "Molecular Modeling of Energetic Materials: The Parameterization and Validation of Nitrate Esters in the COMPASS Force Field", Journal of Physical Chemistry B 104 pp. 2477-2489 (2000)
  4. Jie Yang, Yi Ren, An-min Tian and Huai Sun "COMPASS Force Field for 14 Inorganic Molecules, He, Ne, Ar, Kr, Xe, H2, O2, N2, NO, CO, CO2, NO2, CS2, and SO2, in Liquid Phases", Journal of Physical Chemistry B 104 pp. 4951-4957 (2000)
  5. Michael J. McQuaid, Huai Sun and David Rigby "Development and validation of COMPASS force field parameters for molecules with aliphatic azide chains", Journal of Computational Chemistry 25 pp. 61-71 (2004)