Pair distribution function: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(New page: For a fluid of <math>N</math> particles, enclosed in a volume <math>V</math> at a given temperature <math>T</math> (canonical ensemble) interacting via the `central' potential <math>\P...)
 
No edit summary
Line 5: Line 5:
{\int ... \int e^{-\beta \Phi(r_1,...,r_N)}{\rm d}r_3...{\rm d}r_N}
{\int ... \int e^{-\beta \Phi(r_1,...,r_N)}{\rm d}r_3...{\rm d}r_N}
{\int e^{-\beta \Phi(r_1,...,r_N){\rm d}r_1...{\rm d}r_N}}</math>
{\int e^{-\beta \Phi(r_1,...,r_N){\rm d}r_1...{\rm d}r_N}}</math>
==Exact convolution equation for <math>g(r)</math>==
See Eq. 5.10 of Ref. 1:
:<math>\ln g(r_{12}) + \frac{\Phi(r_{12})}{kT} - E(r_{12}) = n \int \left(g(r_{13}) -1 - \ln g(r_{13}) -  \frac{\Phi(r_{13})}{kT} - E(r_{13})  \right)(g(r_{23}) -1)  ~{\rm d}r_3</math>


==See also==
==See also==
Line 10: Line 15:
*[[Pressure equation]]
*[[Pressure equation]]
*[[Energy equation]]
*[[Energy equation]]
==References==
#[http://dx.doi.org/10.1088/0034-4885/28/1/306 J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics '''28''' pp. 169-199 (1965)]
[[category: statistical mechanics]]

Revision as of 17:11, 30 May 2007

For a fluid of particles, enclosed in a volume at a given temperature (canonical ensemble) interacting via the `central' potential , the two particle distribution function is defined as

Exact convolution equation for

See Eq. 5.10 of Ref. 1:


See also

References

  1. J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics 28 pp. 169-199 (1965)