Virial equation of state: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (Rearranged references slightly.) |
Carl McBride (talk | contribs) m (→Virial coefficients: Added internal link.) |
||
Line 15: | Line 15: | ||
*<math> B_k\left( T \right) </math> is called the k-th virial coefficient | *<math> B_k\left( T \right) </math> is called the k-th virial coefficient | ||
==Virial coefficients== | ==Virial coefficients== | ||
The [[second virial coefficient]] represents the initial departure from ideal-gas | The [[second virial coefficient]] represents the initial departure from [[Ideal gas |ideal-gas]] behaviour | ||
:<math>B_{2}(T)= \frac{N_A}{2V} \int .... \int (1-e^{-\Phi/k_BT}) ~d\tau_1 d\tau_2</math> | :<math>B_{2}(T)= \frac{N_A}{2V} \int .... \int (1-e^{-\Phi/k_BT}) ~d\tau_1 d\tau_2</math> |
Revision as of 12:27, 1 August 2008
The virial equation of state is used to describe the behavior of diluted gases. It is usually written as an expansion of the compressibility factor, , in terms of either the density or the pressure. Such an expansion was first introduced by Heike Kamerlingh Onnes in 1901 (Ref. 1 and 2). In the first case:
- .
where
- is the pressure
- is the volume
- is the number of molecules
- is the temperature
- is the Boltzmann constant
- is the (number) density
- is called the k-th virial coefficient
Virial coefficients
The second virial coefficient represents the initial departure from ideal-gas behaviour
where is Avogadros number and and are volume elements of two different molecules in configuration space.
One can write the third virial coefficient as
where f is the Mayer f-function (see also: Cluster integrals). See also:
Convergence
For a commentary on the convergence of the virial equation of state see Ref 4 and section 3 of Ref. 5.
References
- H. Kammerlingh Onnes "Expression of the equation of state of gases and liquids by means of series", Communications from the Physical Laboratory of the University of Leiden 71 pp. 3-25 (1901)
- H. Kammerlingh Onnes "Expression of the equation of state of gases and liquids by means of series", Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 4 pp. 125-147 (1902)
- James A Beattie and Walter H Stockmayer "Equations of state", Reports on Progress in Physics 7 pp. 195-229 (1940)
- J. L. Lebowitz and O. Penrose "Convergence of Virial Expansions", Journal of Mathematical Physics 5 pp. 841-847 (1964)
- A. J. Masters "Virial expansions", Journal of Physics: Condensed Matter 20 283102 (2008)