Virial equation of state: Difference between revisions
Carl McBride (talk | contribs) m (→Virial coefficients: Added internal link.) |
Carl McBride (talk | contribs) m (Added a book reference.) |
||
| Line 1: | Line 1: | ||
The '''virial equation of state''' is used to describe the behavior of diluted gases. | The '''virial equation of state''' is used to describe the behavior of diluted gases. | ||
It is usually written as an expansion of the [[compressibility factor]], <math> Z </math>, in terms of either the | It is usually written as an expansion of the [[compressibility factor]], <math> Z </math>, in terms of either the | ||
density or the pressure. Such an expansion was first introduced by Heike Kamerlingh Onnes in 1901 ( | density or the pressure. Such an expansion was first introduced by Heike Kamerlingh Onnes in 1901 <ref> H. Kammerlingh Onnes "Expression of the equation of state of gases and liquids by means of series", Communications from the Physical Laboratory of the University of Leiden '''71''' pp. 3-25 (1901)</ref> | ||
<ref>[http://www.digitallibrary.nl/proceedings/search/detail.cfm?pubid=436&view=image&startrow=1 H. Kammerlingh Onnes "Expression of the equation of state of gases and liquids by means of series", Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen '''4''' pp. 125-147 (1902)]</ref>. In the first case: | |||
:<math> \frac{p V}{N k_B T } = Z = 1 + \sum_{k=2}^{\infty} B_k(T) \rho^{k-1}</math>. | :<math> \frac{p V}{N k_B T } = Z = 1 + \sum_{k=2}^{\infty} B_k(T) \rho^{k-1}</math>. | ||
| Line 31: | Line 32: | ||
==Convergence== | ==Convergence== | ||
For a commentary on the convergence of the virial equation of state see | For a commentary on the convergence of the virial equation of state see <ref>[http://dx.doi.org/10.1063/1.1704186 J. L. Lebowitz and O. Penrose "Convergence of Virial Expansions", Journal of Mathematical Physics '''5''' pp. 841-847 (1964)]</ref> and section 3 of <ref>[http://dx.doi.org/10.1088/0953-8984/20/28/283102 A. J. Masters "Virial expansions", Journal of Physics: Condensed Matter '''20''' 283102 (2008)]</ref> | ||
==References== | ==References== | ||
<references/> | |||
'''Related reading''' | |||
*[http://dx.doi.org/10.1088/0034-4885/7/1/312 James A Beattie and Walter H Stockmayer "Equations of state", Reports on Progress in Physics '''7''' pp. 195-229 (1940)] | |||
*Edward Allen Mason and Thomas Harley Spurling "The virial equation of state", Pergamon Press (1969) ISBN 0080132928 | |||
[[category:equations of state]] | [[category:equations of state]] | ||
Revision as of 10:31, 21 October 2009
The virial equation of state is used to describe the behavior of diluted gases. It is usually written as an expansion of the compressibility factor, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z } , in terms of either the density or the pressure. Such an expansion was first introduced by Heike Kamerlingh Onnes in 1901 [1] [2]. In the first case:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{p V}{N k_B T } = Z = 1 + \sum_{k=2}^{\infty} B_k(T) \rho^{k-1}} .
where
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p } is the pressure
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V } is the volume
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } is the number of molecules
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is the temperature
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho \equiv \frac{N}{V} } is the (number) density
- is called the k-th virial coefficient
Virial coefficients
The second virial coefficient represents the initial departure from ideal-gas behaviour
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{2}(T)= \frac{N_A}{2V} \int .... \int (1-e^{-\Phi/k_BT}) ~d\tau_1 d\tau_2}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_A} is Avogadros number and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\tau_1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\tau_2} are volume elements of two different molecules in configuration space.
One can write the third virial coefficient as
where f is the Mayer f-function (see also: Cluster integrals). See also:
Convergence
For a commentary on the convergence of the virial equation of state see [3] and section 3 of [4]
References
- ↑ H. Kammerlingh Onnes "Expression of the equation of state of gases and liquids by means of series", Communications from the Physical Laboratory of the University of Leiden 71 pp. 3-25 (1901)
- ↑ H. Kammerlingh Onnes "Expression of the equation of state of gases and liquids by means of series", Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 4 pp. 125-147 (1902)
- ↑ J. L. Lebowitz and O. Penrose "Convergence of Virial Expansions", Journal of Mathematical Physics 5 pp. 841-847 (1964)
- ↑ A. J. Masters "Virial expansions", Journal of Physics: Condensed Matter 20 283102 (2008)
Related reading
- James A Beattie and Walter H Stockmayer "Equations of state", Reports on Progress in Physics 7 pp. 195-229 (1940)
- Edward Allen Mason and Thomas Harley Spurling "The virial equation of state", Pergamon Press (1969) ISBN 0080132928