The following are equations of state for mixtures of hard spheres.
Mansoori, Carnahan, Starling, and Leland[edit]
The Mansoori, Carnahan, Starling, and Leland equation of state is given by (Ref. 1 Eq. 7):

where

where
is the number of components,
is the diameter of the
th component, and
is the mole fraction, such that
.


![{\displaystyle y_{3}=\left[\sum _{i=1}^{m}\left({\frac {\xi _{i}}{\xi }}\right)^{2/3}x_{i}^{1/3}\right]^{3}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9c86d562e29a6d99c16a22bf619c2815949824f9)

Santos, Yuste and López De Haro[edit]
Ref. 2
Hansen-Goos and Roth[edit]
Ref. 3 Based on the Carnahan-Starling equation of state
References[edit]
- G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, Jr. "Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres", Journal of Chemical Physics 54 pp. 1523-1525 (1971)
- Andrés Santos; Santos Bravo Yuste; Mariano López De Haro "Equation of state of a multicomponent d-dimensional hard-sphere fluid", Molecular Physics 96 pp. 1-5 (1999)
- Hendrik Hansen-Goos and Roland Roth "A new generalization of the Carnahan-Starling equation of state to additive mixtures of hard spheres", Journal of Chemical Physics 124 154506 (2006)