Combining rules

From SklogWiki
Revision as of 15:32, 4 January 2012 by Carl McBride (talk | contribs) (Reverted edits by 70.135.118.126 (talk) to last revision by Carl McBride)
Jump to navigation Jump to search

The combining rules are geometric expressions designed to provide the interaction energy between two dissimilar non-bonded atoms (here labelled and ). Most of the rules are designed to be used with a specific interaction potential in mind. (See also Mixing rules).

Böhm-Ahlrichs

[1]

Diaz Peña-Pando-Renuncio

[2] [3]

Fender-Halsey

The Fender-Halsey combining rule for the Lennard-Jones model is given by [4]

Gilbert-Smith

The Gilbert-Smith rules for the Born-Huggins-Meyer potential[5][6][7].

Good-Hope rule

The Good-Hope rule for MieLennard‐Jones or Buckingham potentials [8] is given by (Eq. 2):

Hudson and McCoubrey

[9]

Kong rules

The Kong rules for the Lennard-Jones model are given by (Table I in [10]):

Lorentz-Berthelot rules

The Lorentz rule is given by [11]

which is only really valid for the hard sphere model.

The Berthelot rule is given by [12]

These rules are simple and widely used, but are not without their failings [13] [14] [15].

Mason-Rice rule

The Mason-Rice rule for the Exp-6 potential [16].

Sikora rules

The Sikora rules for the Lennard-Jones model [17].

Tang and Toennies

[18]

Waldman-Hagler rules

[19]

References

  1. Hans‐Joachim Böhm and Reinhart Ahlrichs "A study of short‐range repulsions", Journal of Chemical Physics 77 pp. 2028- (1982)
  2. M. Diaz Peña, C. Pando, and J. A. R. Renuncio "Combination rules for intermolecular potential parameters. I. Rules based on approximations for the long-range dispersion energy", Journal of Chemical Physics 76 pp. 325- (1982)
  3. M. Diaz Peña, C. Pando, and J. A. R. Renuncio "Combination rules for intermolecular potential parameters. II. Rules based on approximations for the long-range dispersion energy and an atomic distortion model for the repulsive interactions", Journal of Chemical Physics 76 pp. 333- (1982)
  4. B. E. F. Fender and G. D. Halsey, Jr. "Second Virial Coefficients of Argon, Krypton, and Argon-Krypton Mixtures at Low Temperatures", Journal of Chemical Physics 36 pp. 1881-1888 (1962)
  5. T. L. Gilbert "Soft‐Sphere Model for Closed‐Shell Atoms and Ions", Journal of Chemical Physics 49 pp. 2640- (1968)
  6. T. L. Gilbert, O. C. Simpson, and M. A. Williamson "Relation between charge and force parameters of closed‐shell atoms and ions", Journal of Chemical Physics 63 pp. 4061- (1975)
  7. Felix T. Smith "Atomic Distortion and the Combining Rule for Repulsive Potentials", Physical Review A 5 pp. 1708-1713 (1972)
  8. Robert J. Good and Christopher J. Hope "New Combining Rule for Intermolecular Distances in Intermolecular Potential Functions", Journal of Chemical Physics 53 pp. 540- (1970)
  9. G. H. Hudson and J. C. McCoubrey "Intermolecular forces between unlike molecules. A more complete form of the combining rules", Transactions of the Faraday Society 56 pp. 761-766 (1960)
  10. Chang Lyoul Kong "Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12–6) potential and the Morse potential", Journal of Chemical Physics 59 pp. 2464-2467 (1973)
  11. H. A. Lorentz "Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase", Annalen der Physik 12 pp. 127-136 (1881)
  12. Daniel Berthelot "Sur le mélange des gaz", Comptes rendus hebdomadaires des séances de l’Académie des Sciences, 126 pp. 1703-1855 (1898)
  13. Jérôme Delhommelle; Philippe Millié "Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation", Molecular Physics 99 pp. 619-625 (2001)
  14. Dezso Boda and Douglas Henderson "The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture", Molecular Physics 106 pp. 2367-2370 (2008)
  15. W. Song, P. J. Rossky, and M. Maroncelli "Modeling alkane+perfluoroalkane interactions using all-atom potentials: Failure of the usual combining rules", Journal of Chemical Physics 119 pp. 9145- (2003)
  16. Edward A. Mason and William E. Rice "The Intermolecular Potentials of Helium and Hydrogen", Journal of Chemical Physics 22 pp. 522- (1954)
  17. P. T. Sikora "Combining rules for spherically symmetric intermolecular potentials", Journal of Physics B: Atomic and Molecular Physics 3 pp. 1475- (1970)
  18. K. T. Tang and J. Peter Toennies "New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems", Zeitschrift für Physik D Atoms, Molecules and Clusters 1 pp. 91-101 (1986)
  19. M. Waldman and A. T. Hagler "New combining rules for rare-gas Van der-Waals parameters", Journal of Computational Chemistry 14 pp. 1077-1084 (1993)

Related reading