The compressibility equation (
) can be derived from the density fluctuations of the grand canonical ensemble (Eq. 3.16 in Ref. 1). For a homogeneous system:
![{\displaystyle k_{B}T\left.{\frac {\partial \rho }{\partial P}}\right\vert _{T}=1+\rho \int h(r)~{\rm {d}}{\mathbf {r} }=1+\rho \int [{\rm {g}}^{(2)}({\mathbf {r} })-1]{\rm {d}}{\mathbf {r} }={\frac {\langle N^{2}\rangle -\langle N\rangle ^{2}}{\langle N\rangle }}=\rho k_{B}T\chi _{T}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d1b626fb4f5dfe92b1f9f04c6e54ea0bd0060b1c)
where
is the pair distribution function and
is the Boltzmann constant.
For a spherical potential

Note that the compressibility equation, unlike the energy and pressure equations,
is valid even when the inter-particle forces are not pairwise additive.
References
- J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics 28 pp. 169-199 (1965)