Pair distribution function
For a fluid of particles, enclosed in a volume at a given temperature (canonical ensemble) interacting via the `central' intermolecular pair potential , the two particle distribution function is defined as
where , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant.
Exact convolution equation for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(r)}
See Eq. 5.10 of Ref. 1:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln g(r_{12}) + \frac{\Phi(r_{12})}{kT} - E(r_{12}) = n \int \left(g(r_{13}) -1 - \ln g(r_{13}) - \frac{\Phi(r_{13})}{kT} - E(r_{13}) \right)(g(r_{23}) -1) ~{\rm d}{\mathbf r}_3}
where, i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_{12} = |{\mathbf r}_2 - {\mathbf r}_1|} .