Virial equation of state
The virial equation of state is used to describe the behavior of diluted gases. It is usually written as an expansion of the compressibility factor, , in terms of either the density or the pressure. Such an expansion was first introduced by Heike Kamerlingh Onnes in 1901 (Ref. 1 and 2). In the first case:
- .
where
- is the pressure
- is the volume
- is the number of molecules
- is the temperature
- is the Boltzmann constant
- is the (number) density
- is called the k-th virial coefficient
Virial coefficients
The second virial coefficient represents the initial departure from ideal-gas behavior
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_A} is Avogadros number and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\tau_1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\tau_2} are volume elements of two different molecules in configuration space.
One can write the third virial coefficient as
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{3}(T)= - \frac{1}{3V} \int \int \int f_{12} f_{13} f_{23} dr_1 dr_2 dr_3}
where f is the Mayer f-function (see also: Cluster integrals). See also:
Convergence
References
- H. Kammerlingh Onnes "Expression of the equation of state of gases and liquids by means of series", Communications from the Physical Laboratory of the University of Leiden 71 pp. 3-25 (1901)
- H. Kammerlingh Onnes "Expression of the equation of state of gases and liquids by means of series", Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 4 pp. 125-147 (1902)
- James A Beattie and Walter H Stockmayer "Equations of state", Reports on Progress in Physics 7 pp. 195-229 (1940)
- A. J. Masters "Virial expansions", Journal of Physics: Condensed Matter 20 283102 (2008)