The Wigner D-matrix is a square matrix, of dimension
, given by

where
and
are Euler angles, and
where
, known as Wigner's reduced d-matrix, is given by
![{\displaystyle {\begin{array}{lcl}d_{m'm}^{j}(\beta )&=&\langle jm'|e^{-i\beta j_{y}}|jm\rangle \\&=&[(j+m')!(j-m')!(j+m)!(j-m)!]^{1/2}\sum _{s}{\frac {(-1)^{m'-m+s}}{(j+m-s)!s!(m'-m+s)!(j-m'-s)!}}\\&&\times \left(\cos {\frac {\beta }{2}}\right)^{2j+m-m'-2s}\left(\sin {\frac {\beta }{2}}\right)^{m'-m+2s}\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/79acfb5d6c1bdda1f22d371409deaa6b9fd0a1df)
Relation with spherical harmonic functions
The D-matrix elements with second index equal to zero, are proportional
to spherical harmonics (normalized to unity)

References
- E. P. Wigner, Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren, Vieweg Verlag, Braunschweig (1931).